Nuprl Lemma : axiom-choice-1X-quot
∀X:Type. ∀P:(ℕ ⟶ ℕ) ⟶ X ⟶ ℙ.  ((∀f:ℕ ⟶ ℕ. ⇃(∃m:X. (P f m))) 
⇒ ⇃(∃F:(ℕ ⟶ ℕ) ⟶ X. ∀f:ℕ ⟶ ℕ. (P f (F f))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
exists_wf, 
quotient_wf, 
all_wf, 
canonicalizable-nat-to-nat, 
canonicalizable_wf, 
trivial-quotient-true, 
nat_wf, 
axiom-choice-quot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
functionEquality, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
applyEquality, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}X:Type.  \mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f))))
Date html generated:
2016_05_14-PM-09_42_33
Last ObjectModification:
2016_01_06-PM-01_29_32
Theory : continuity
Home
Index