Nuprl Lemma : axiom-choice-1X-quot

X:Type. ∀P:(ℕ ⟶ ℕ) ⟶ X ⟶ ℙ.  ((∀f:ℕ ⟶ ℕ. ⇃(∃m:X. (P m)))  ⇃(∃F:(ℕ ⟶ ℕ) ⟶ X. ∀f:ℕ ⟶ ℕ(P (F f))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] nat: prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  equiv_rel_true true_wf exists_wf quotient_wf all_wf canonicalizable-nat-to-nat canonicalizable_wf trivial-quotient-true nat_wf axiom-choice-quot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin functionEquality hypothesis independent_functionElimination isectElimination hypothesisEquality because_Cache sqequalRule lambdaEquality cumulativity applyEquality independent_isectElimination universeEquality

Latex:
\mforall{}X:Type.  \mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  X.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f))))



Date html generated: 2016_05_14-PM-09_42_33
Last ObjectModification: 2016_01_06-PM-01_29_32

Theory : continuity


Home Index