Nuprl Lemma : axiom-choice-quot

T:Type
  (⇃(canonicalizable(T))  (∀X:Type. ∀P:T ⟶ X ⟶ ℙ.  ((∀f:T. ⇃(∃m:X. (P m)))  ⇃(∃F:T ⟶ X. ∀f:T. (P (F f))))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] prop: guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a pi1: fst(t)
Lemmas referenced :  equal_wf canonicalizable_wf equiv_rel_true true_wf quotient_wf all_wf implies-quotient-true exists_wf all-quotient-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule lambdaEquality isectElimination applyEquality productElimination functionEquality promote_hyp dependent_pairFormation because_Cache cumulativity independent_isectElimination universeEquality rename equalityTransitivity equalitySymmetry

Latex:
\mforall{}T:Type
    (\00D9(canonicalizable(T))
    {}\mRightarrow{}  (\mforall{}X:Type.  \mforall{}P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}f:T.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:T  {}\mrightarrow{}  X.  \mforall{}f:T.  (P  f  (F  f))))))



Date html generated: 2016_05_14-PM-09_42_24
Last ObjectModification: 2016_01_06-PM-01_27_04

Theory : continuity


Home Index