Nuprl Lemma : axiom-choice-quot
∀T:Type
  (⇃(canonicalizable(T)) ⇒ (∀X:Type. ∀P:T ⟶ X ⟶ ℙ.  ((∀f:T. ⇃(∃m:X. (P f m))) ⇒ ⇃(∃F:T ⟶ X. ∀f:T. (P f (F f))))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
canonicalizable: canonicalizable(T), 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
guard: {T}, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
pi1: fst(t)
Lemmas referenced : 
equal_wf, 
canonicalizable_wf, 
equiv_rel_true, 
true_wf, 
quotient_wf, 
all_wf, 
implies-quotient-true, 
exists_wf, 
all-quotient-true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
applyEquality, 
productElimination, 
functionEquality, 
promote_hyp, 
dependent_pairFormation, 
because_Cache, 
cumulativity, 
independent_isectElimination, 
universeEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}T:Type
    (\00D9(canonicalizable(T))
    {}\mRightarrow{}  (\mforall{}X:Type.  \mforall{}P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}f:T.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:T  {}\mrightarrow{}  X.  \mforall{}f:T.  (P  f  (F  f))))))
Date html generated:
2016_05_14-PM-09_42_24
Last ObjectModification:
2016_01_06-PM-01_27_04
Theory : continuity
Home
Index