Nuprl Lemma : finite-nat-seq-to-list_wf
∀[f:finite-nat-seq()]. (finite-nat-seq-to-list(f) ∈ ℕ List)
Proof
Definitions occuring in Statement : 
finite-nat-seq-to-list: finite-nat-seq-to-list(f)
, 
finite-nat-seq: finite-nat-seq()
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
finite-nat-seq-to-list: finite-nat-seq-to-list(f)
, 
finite-nat-seq: finite-nat-seq()
, 
nat: ℕ
Lemmas referenced : 
finite-nat-seq_wf, 
int_seg_wf, 
cons_wf, 
append_wf, 
nil_wf, 
nat_wf, 
list_wf, 
primrec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[f:finite-nat-seq()].  (finite-nat-seq-to-list(f)  \mmember{}  \mBbbN{}  List)
Date html generated:
2016_05_14-PM-09_54_48
Last ObjectModification:
2016_01_15-AM-09_32_01
Theory : continuity
Home
Index