Nuprl Lemma : finite-nat-seq-to-list_wf

[f:finite-nat-seq()]. (finite-nat-seq-to-list(f) ∈ ℕ List)


Proof




Definitions occuring in Statement :  finite-nat-seq-to-list: finite-nat-seq-to-list(f) finite-nat-seq: finite-nat-seq() list: List nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite-nat-seq-to-list: finite-nat-seq-to-list(f) finite-nat-seq: finite-nat-seq() nat:
Lemmas referenced :  finite-nat-seq_wf int_seg_wf cons_wf append_wf nil_wf nat_wf list_wf primrec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution hypothesisEquality lemma_by_obid isectElimination thin hypothesis lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[f:finite-nat-seq()].  (finite-nat-seq-to-list(f)  \mmember{}  \mBbbN{}  List)



Date html generated: 2016_05_14-PM-09_54_48
Last ObjectModification: 2016_01_15-AM-09_32_01

Theory : continuity


Home Index