Nuprl Lemma : strong-continuity3-half-squash-equipollent

[T:Type]. ∀[B:Type]. (T  (∀F:(ℕ ⟶ B) ⟶ ℕ. ⇃(strong-continuity3(B;F)))) supposing (T ⊆r ℕ) ∧ (↓T)


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) equipollent: B quotient: x,y:A//B[x; y] nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T implies:  Q and: P ∧ Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} prop: pi1: fst(t) exists: x:A. B[x] equipollent: B cand: c∧ B all: x:A. B[x] implies:  Q squash: T subtype_rel: A ⊆B and: P ∧ Q member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  strong-continuity3_functionality implies-quotient-true2 trivial-quotient-true strong-continuity3_wf squash_wf subtype_rel_wf equipollent_wf compose_wf nat_wf strong-continuity3-half-squash
Rules used in proof :  independent_functionElimination productEquality universeEquality because_Cache cumulativity functionEquality functionExtensionality applyEquality lambdaEquality dependent_functionElimination independent_pairFormation independent_isectElimination isectElimination extract_by_obid lambdaFormation rename baseClosed hypothesisEquality imageMemberEquality imageElimination hypothesis axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    \mforall{}[B:Type].  (T  \msim{}  B  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  B)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity3(B;F))))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)



Date html generated: 2017_09_29-PM-06_05_35
Last ObjectModification: 2017_09_03-PM-09_41_34

Theory : continuity


Home Index