Nuprl Lemma : uniform-continuity-from-fan3

[T:Type]
  ((∃P:ℕ ⟶ ℙ. ∃a:ℕ(P[a] ∧ (∀n:ℕDec(P[n])) ∧ (∃h:T ⟶ {n:ℕP[n]} Bij(T;{n:ℕP[n]} ;h))))
   (∀F:(ℕ ⟶ 𝔹) ⟶ T. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ T)))))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B prop: so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q not: ¬A false: False
Lemmas referenced :  uniform-continuity-from-fan2 nat_wf biject_wf subtype_rel_wf exists_wf all_wf equal_wf bool_wf subtype_rel_self decidable_wf not_wf set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination productElimination dependent_pairFormation setEquality applyEquality because_Cache sqequalRule lambdaEquality setElimination rename independent_pairFormation productEquality functionEquality dependent_functionElimination instantiate cumulativity universeEquality unionEquality equalityTransitivity equalitySymmetry unionElimination dependent_set_memberEquality voidElimination

Latex:
\mforall{}[T:Type]
    ((\mexists{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mexists{}a:\mBbbN{}.  (P[a]  \mwedge{}  (\mforall{}n:\mBbbN{}.  Dec(P[n]))  \mwedge{}  (\mexists{}h:T  {}\mrightarrow{}  \{n:\mBbbN{}|  P[n]\}  .  Bij(T;\{n:\mBbbN{}|  P[n]\}  ;h))))
    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))))



Date html generated: 2019_06_20-PM-02_52_30
Last ObjectModification: 2018_08_21-PM-01_56_54

Theory : continuity


Home Index