Nuprl Lemma : uniform-continuity-from-fan3
∀[T:Type]
  ((∃P:ℕ ⟶ ℙ. ∃a:ℕ. (P[a] ∧ (∀n:ℕ. Dec(P[n])) ∧ (∃h:T ⟶ {n:ℕ| P[n]} . Bij(T;{n:ℕ| P[n]} h))))
  ⇒ (∀F:(ℕ ⟶ 𝔹) ⟶ T. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) ⇒ ((F f) = (F g) ∈ T)))))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f), 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
true: True, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
false: False
Lemmas referenced : 
uniform-continuity-from-fan2, 
nat_wf, 
biject_wf, 
subtype_rel_wf, 
exists_wf, 
all_wf, 
equal_wf, 
bool_wf, 
subtype_rel_self, 
decidable_wf, 
not_wf, 
set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
setEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
independent_pairFormation, 
productEquality, 
functionEquality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
universeEquality, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_set_memberEquality, 
voidElimination
Latex:
\mforall{}[T:Type]
    ((\mexists{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mexists{}a:\mBbbN{}.  (P[a]  \mwedge{}  (\mforall{}n:\mBbbN{}.  Dec(P[n]))  \mwedge{}  (\mexists{}h:T  {}\mrightarrow{}  \{n:\mBbbN{}|  P[n]\}  .  Bij(T;\{n:\mBbbN{}|  P[n]\}  ;h))))
    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))))
Date html generated:
2019_06_20-PM-02_52_30
Last ObjectModification:
2018_08_21-PM-01_56_54
Theory : continuity
Home
Index