Nuprl Lemma : choicef_wf

[xm:XM]. ∀[T:Type]. ∀[P:T ⟶ ℙ].  ∈x:T. P[x] ∈ supposing ∃a:T. P[a]


Proof




Definitions occuring in Statement :  choicef: x:T. P[x] xmiddle: XM uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  choicef: x:T. P[x] xmiddle: XM decidable: Dec(P) exists: x:A. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] or: P ∨ Q implies:  Q not: ¬A false: False
Lemmas referenced :  exists_wf xmiddle_wf set_wf or_wf not_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalHypSubstitution sqequalRule Error :productIsType,  Error :universeIsType,  hypothesisEquality cut applyEquality hypothesis thin lambdaEquality universeEquality introduction extract_by_obid isectElimination Error :functionIsType,  because_Cache functionEquality cumulativity Error :isect_memberFormation_alt,  axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionExtensionality lambdaFormation dependent_functionElimination independent_functionElimination unionElimination setElimination rename voidElimination productElimination dependent_set_memberFormation

Latex:
\mforall{}[xm:XM].  \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mmember{}x:T.  P[x]  \mmember{}  T  supposing  \mexists{}a:T.  P[a]



Date html generated: 2019_06_20-AM-11_17_55
Last ObjectModification: 2018_09_26-AM-10_25_02

Theory : core_2


Home Index