Nuprl Lemma : choicef_wf
∀[xm:XM]. ∀[T:Type]. ∀[P:T ⟶ ℙ].  ∈x:T. P[x] ∈ T supposing ∃a:T. P[a]
Proof
Definitions occuring in Statement : 
choicef: ∈x:T. P[x]
, 
xmiddle: XM
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
choicef: ∈x:T. P[x]
, 
xmiddle: XM
, 
decidable: Dec(P)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
exists_wf, 
xmiddle_wf, 
set_wf, 
or_wf, 
not_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalHypSubstitution, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
hypothesisEquality, 
cut, 
applyEquality, 
hypothesis, 
thin, 
lambdaEquality, 
universeEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :functionIsType, 
because_Cache, 
functionEquality, 
cumulativity, 
Error :isect_memberFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionExtensionality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
setElimination, 
rename, 
voidElimination, 
productElimination, 
dependent_set_memberFormation
Latex:
\mforall{}[xm:XM].  \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mmember{}x:T.  P[x]  \mmember{}  T  supposing  \mexists{}a:T.  P[a]
Date html generated:
2019_06_20-AM-11_17_55
Last ObjectModification:
2018_09_26-AM-10_25_02
Theory : core_2
Home
Index