Nuprl Lemma : classical-exists2

[T:Type]. ∀[P:T ⟶ ℙ].  uiff(¬(∀x:T. P[x]));{∃x:T. P[x]})


Proof




Definitions occuring in Statement :  classical: {P} uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a classical: {P} unit: Unit so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: not: ¬A implies:  Q false: False all: x:A. B[x] or: P ∨ Q
Lemmas referenced :  it_wf classical-excluded-middle classical_wf all_wf not_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality axiomEquality natural_numberEquality hypothesis lemma_by_obid isectElimination hypothesisEquality lambdaEquality applyEquality lambdaFormation independent_functionElimination voidElimination dependent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality unionElimination dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    uiff(\mneg{}(\mforall{}x:T.  (\mneg{}P[x]));\{\mexists{}x:T.  P[x]\})



Date html generated: 2016_05_13-PM-03_17_01
Last ObjectModification: 2016_01_06-PM-05_20_32

Theory : core_2


Home Index