Nuprl Lemma : l-union-contained
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs,cs:T List. (as ⋃ bs ⊆ cs
⇐⇒ as ⊆ cs ∧ bs ⊆ cs)
Proof
Definitions occuring in Statement :
l-union: as ⋃ bs
,
l_contains: A ⊆ B
,
list: T List
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
l_contains: A ⊆ B
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
or: P ∨ Q
,
prop: ℙ
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
Lemmas referenced :
l_member_wf,
all_wf,
or_wf,
and_wf,
member-union,
l-union_wf,
iff_wf,
l_all_iff,
l_all_wf,
list_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
independent_pairFormation,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_functionElimination,
inlFormation,
lemma_by_obid,
isectElimination,
sqequalRule,
inrFormation,
because_Cache,
lambdaEquality,
functionEquality,
productElimination,
unionElimination,
addLevel,
impliesFunctionality,
allFunctionality,
allLevelFunctionality,
impliesLevelFunctionality,
cumulativity,
productEquality,
setElimination,
rename,
setEquality,
andLevelFunctionality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}eq:EqDecider(T). \mforall{}as,bs,cs:T List. (as \mcup{} bs \msubseteq{} cs \mLeftarrow{}{}\mRightarrow{} as \msubseteq{} cs \mwedge{} bs \msubseteq{} cs)
Date html generated:
2016_05_14-PM-03_24_47
Last ObjectModification:
2015_12_26-PM-06_22_04
Theory : decidable!equality
Home
Index