Nuprl Lemma : l-union-contained

[T:Type]. ∀eq:EqDecider(T). ∀as,bs,cs:T List.  (as ⋃ bs ⊆ cs ⇐⇒ as ⊆ cs ∧ bs ⊆ cs)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs l_contains: A ⊆ B list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T or: P ∨ Q prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  l_member_wf all_wf or_wf and_wf member-union l-union_wf iff_wf l_all_iff l_all_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination inlFormation lemma_by_obid isectElimination sqequalRule inrFormation because_Cache lambdaEquality functionEquality productElimination unionElimination addLevel impliesFunctionality allFunctionality allLevelFunctionality impliesLevelFunctionality cumulativity productEquality setElimination rename setEquality andLevelFunctionality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs,cs:T  List.    (as  \mcup{}  bs  \msubseteq{}  cs  \mLeftarrow{}{}\mRightarrow{}  as  \msubseteq{}  cs  \mwedge{}  bs  \msubseteq{}  cs)



Date html generated: 2016_05_14-PM-03_24_47
Last ObjectModification: 2015_12_26-PM-06_22_04

Theory : decidable!equality


Home Index