Nuprl Lemma : l_disjoint_intersection

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b,c:T List].
  l_disjoint(T;l_intersection(eq;b;c);a) supposing l_disjoint(T;b;a) ∨ l_disjoint(T;c;a)


Proof




Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) l_disjoint: l_disjoint(T;l1;l2) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] not: ¬A implies:  Q false: False and: P ∧ Q or: P ∨ Q cand: c∧ B prop: iff: ⇐⇒ Q
Lemmas referenced :  and_wf l_member_wf member-intersection l_intersection_wf not_wf or_wf l_disjoint_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation thin productElimination unionElimination hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination independent_pairFormation voidElimination lemma_by_obid isectElimination addLevel impliesFunctionality andLevelFunctionality sqequalRule lambdaEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:T  List].
    l\_disjoint(T;l\_intersection(eq;b;c);a)  supposing  l\_disjoint(T;b;a)  \mvee{}  l\_disjoint(T;c;a)



Date html generated: 2016_05_14-PM-03_32_35
Last ObjectModification: 2015_12_26-PM-06_01_16

Theory : decidable!equality


Home Index