Nuprl Lemma : l_intersection_wf

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L1,L2:A List].  (l_intersection(eq;L1;L2) ∈ List)


Proof




Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  l_intersection: l_intersection(eq;L1;L2) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop:
Lemmas referenced :  filter_wf5 l_member_wf deq-member_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality lambdaFormation hypothesis setElimination rename because_Cache setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L1,L2:A  List].    (l\_intersection(eq;L1;L2)  \mmember{}  A  List)



Date html generated: 2016_05_14-PM-03_32_27
Last ObjectModification: 2015_12_26-PM-06_01_21

Theory : decidable!equality


Home Index