Nuprl Lemma : l_intersection_wf
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[L1,L2:A List].  (l_intersection(eq;L1;L2) ∈ A List)
Proof
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
l_intersection: l_intersection(eq;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
filter_wf5, 
l_member_wf, 
deq-member_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L1,L2:A  List].    (l\_intersection(eq;L1;L2)  \mmember{}  A  List)
Date html generated:
2016_05_14-PM-03_32_27
Last ObjectModification:
2015_12_26-PM-06_01_21
Theory : decidable!equality
Home
Index