Nuprl Lemma : l_disjoint_intersection2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b,c:T List].
  l_disjoint(T;a;l_intersection(eq;b;c)) supposing l_disjoint(T;a;b) ∨ l_disjoint(T;a;c)


Proof




Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) l_disjoint: l_disjoint(T;l1;l2) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q prop: guard: {T} l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] not: ¬A implies:  Q false: False
Lemmas referenced :  l_disjoint-symmetry l_intersection_wf l_disjoint_intersection l_disjoint_wf and_wf l_member_wf or_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination because_Cache unionElimination inlFormation sqequalRule inrFormation lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:T  List].
    l\_disjoint(T;a;l\_intersection(eq;b;c))  supposing  l\_disjoint(T;a;b)  \mvee{}  l\_disjoint(T;a;c)



Date html generated: 2016_05_14-PM-03_32_38
Last ObjectModification: 2015_12_26-PM-06_01_03

Theory : decidable!equality


Home Index