Nuprl Lemma : union-list2_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ll:T List List].  (union-list2(eq;ll) ∈ List)


Proof




Definitions occuring in Statement :  union-list2: union-list2(eq;ll) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  union-list2: union-list2(eq;ll) uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf nil_wf ifthenelse_wf null_wf l-union_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ll:T  List  List].    (union-list2(eq;ll)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_25_23
Last ObjectModification: 2015_12_26-PM-06_22_30

Theory : decidable!equality


Home Index