Nuprl Lemma : assert-int-deq

[x,y:ℤ].  uiff(↑(IntDeq y);x y ∈ ℤ)


Proof




Definitions occuring in Statement :  int-deq: IntDeq assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-deq: IntDeq uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q rev_implies:  Q deq: EqDecider(T)
Lemmas referenced :  equal-wf-base int_subtype_base iff_weakening_uiff assert_wf eq_int_wf assert_of_eq_int assert_witness uiff_wf int-deq_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality applyEquality because_Cache addLevel productElimination independent_isectElimination independent_functionElimination cumulativity instantiate independent_pairEquality isect_memberEquality axiomEquality lambdaEquality setElimination rename equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}(IntDeq  x  y);x  =  y)



Date html generated: 2019_06_20-PM-00_31_56
Last ObjectModification: 2018_08_24-PM-10_58_42

Theory : equality!deciders


Home Index