Nuprl Lemma : finite-fun-deq_wf
∀[T:Type]. ∀[k:ℕ]. ∀[eq:EqDecider(T)].  (finite-fun-deq(k;eq) ∈ EqDecider(ℕk ⟶ T))
Proof
Definitions occuring in Statement : 
finite-fun-deq: finite-fun-deq(k;eq), 
deq: EqDecider(T), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
finite-fun-deq: finite-fun-deq(k;eq), 
deq: EqDecider(T), 
so_lambda: λ2x.t[x], 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
eqof: eqof(d), 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a
Lemmas referenced : 
bdd-all_wf, 
int_seg_wf, 
istype-assert, 
deq_wf, 
istype-nat, 
istype-universe, 
assert-bdd-all, 
eqof_wf, 
safe-assert-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
inhabitedIsType, 
functionIsType, 
lambdaFormation_alt, 
independent_pairFormation, 
equalityIstype, 
because_Cache, 
productIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyLambdaEquality, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[k:\mBbbN{}].  \mforall{}[eq:EqDecider(T)].    (finite-fun-deq(k;eq)  \mmember{}  EqDecider(\mBbbN{}k  {}\mrightarrow{}  T))
Date html generated:
2020_05_19-PM-09_36_35
Last ObjectModification:
2019_10_18-AM-11_58_52
Theory : equality!deciders
Home
Index