Nuprl Lemma : equipollent-void-domain
∀[A:Type]. ℕ0 ⟶ A ~ ℕ1
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
not: ¬A, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
all: ∀x:A. B[x], 
top: Top, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
singleton-type-void-domain, 
singleton-type-one, 
int_seg_wf, 
equipollent-singletons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[A:Type].  \mBbbN{}0  {}\mrightarrow{}  A  \msim{}  \mBbbN{}1
Date html generated:
2016_05_14-PM-04_02_24
Last ObjectModification:
2016_01_14-PM-11_05_49
Theory : equipollence!!cardinality!
Home
Index