Nuprl Lemma : singleton-type-one

singleton-type(ℕ1)


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) int_seg: {i..j-} natural_number: $n
Definitions unfolded in proof :  singleton-type: singleton-type(A) exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: less_than: a < b squash: T true: True uall: [x:A]. B[x] all: x:A. B[x] guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf all_wf int_seg_wf decidable__lt decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int int_seg_properties lelt_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis cut lemma_by_obid introduction imageMemberEquality hypothesisEquality thin baseClosed sqequalHypSubstitution isectElimination setElimination rename productElimination dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry because_Cache

Latex:
singleton-type(\mBbbN{}1)



Date html generated: 2016_05_14-PM-04_02_14
Last ObjectModification: 2016_01_14-PM-11_05_56

Theory : equipollence!!cardinality!


Home Index