Nuprl Lemma : finite-type-implies-finite

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  finite-type(T)  finite(T))


Proof




Definitions occuring in Statement :  finite: finite(T) finite-type: finite-type(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: nat:
Lemmas referenced :  finite-type-equipollent finite-type_wf all_wf decidable_wf equal_wf finite_functionality_wrt_equipollent int_seg_wf nsub_finite
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination productElimination sqequalRule lambdaEquality universeEquality natural_numberEquality setElimination rename dependent_functionElimination

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  finite-type(T)  {}\mRightarrow{}  finite(T))



Date html generated: 2016_05_14-PM-04_05_29
Last ObjectModification: 2015_12_26-PM-07_41_38

Theory : equipollence!!cardinality!


Home Index