Nuprl Lemma : finite-type-equipollent

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (finite-type(T) ⇐⇒ ∃n:ℕ. ℕT))


Proof




Definitions occuring in Statement :  equipollent: B finite-type: finite-type(T) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  equipollent: B finite-type: finite-type(T) uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] rev_implies:  Q biject: Bij(A;B;f) all: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A inject: Inj(A;B;f) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) less_than: a < b bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b subtract: m surject: Surj(A;B;f)
Lemmas referenced :  exists_wf nat_wf int_seg_wf surject_wf biject_wf all_wf decidable_wf equal_wf subtract_wf set_wf less_than_wf primrec-wf2 false_wf le_wf int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf decidable__inject-finite-type finite-type-int_seg decidable__equal_int_seg decidable__le intformnot_wf int_formula_prop_not_lemma not-inject lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__lt itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot add-member-int_seg2 intformeq_wf int_formula_prop_eq_lemma subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis lambdaEquality functionEquality natural_numberEquality setElimination rename hypothesisEquality cumulativity because_Cache functionExtensionality applyEquality dependent_pairFormation universeEquality intEquality dependent_functionElimination independent_functionElimination dependent_set_memberEquality unionElimination independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (finite-type(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  \mBbbN{}n  \msim{}  T))



Date html generated: 2017_04_17-AM-09_34_51
Last ObjectModification: 2017_02_27-PM-05_34_06

Theory : equipollence!!cardinality!


Home Index