Nuprl Lemma : finite-type-equipollent
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (finite-type(T) 
⇐⇒ ∃n:ℕ. ℕn ~ T))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
finite-type: finite-type(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
equipollent: A ~ B
, 
finite-type: finite-type(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
biject: Bij(A;B;f)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
inject: Inj(A;B;f)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtract: n - m
, 
surject: Surj(A;B;f)
Lemmas referenced : 
exists_wf, 
nat_wf, 
int_seg_wf, 
surject_wf, 
biject_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
subtract_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
false_wf, 
le_wf, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
decidable__inject-finite-type, 
finite-type-int_seg, 
decidable__equal_int_seg, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
not-inject, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
add-member-int_seg2, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
cumulativity, 
because_Cache, 
functionExtensionality, 
applyEquality, 
dependent_pairFormation, 
universeEquality, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (finite-type(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  \mBbbN{}n  \msim{}  T))
Date html generated:
2017_04_17-AM-09_34_51
Last ObjectModification:
2017_02_27-PM-05_34_06
Theory : equipollence!!cardinality!
Home
Index