Nuprl Lemma : decidable__inject-finite-type
∀[T:Type]
  (finite-type(T)
  
⇒ (∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀[A:Type]. ((∀x,y:A.  Dec(x = y ∈ A)) 
⇒ (∀f:T ⟶ A. Dec(Inj(T;A;f))))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
inject: Inj(A;B;f)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
inject: Inj(A;B;f)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
finite-type-iff-list, 
equal_wf, 
l_member_wf, 
all_wf, 
l_all_iff, 
l_all_wf, 
iff_wf, 
decidable_functionality, 
inject_wf, 
decidable__l_all, 
decidable__implies, 
set_wf, 
decidable_wf, 
finite-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
cumulativity, 
applyEquality, 
functionExtensionality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
allFunctionality, 
dependent_functionElimination, 
setElimination, 
rename, 
setEquality, 
levelHypothesis, 
allLevelFunctionality, 
impliesLevelFunctionality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    (finite-type(T)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[A:Type].  ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  A.  Dec(Inj(T;A;f))))))
Date html generated:
2017_04_17-AM-07_47_42
Last ObjectModification:
2017_02_27-PM-04_22_08
Theory : list_1
Home
Index