Nuprl Lemma : decidable__inject-finite-type

[T:Type]
  (finite-type(T)
   (∀x,y:T.  Dec(x y ∈ T))
   (∀[A:Type]. ((∀x,y:A.  Dec(x y ∈ A))  (∀f:T ⟶ A. Dec(Inj(T;A;f))))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) inject: Inj(A;B;f) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] inject: Inj(A;B;f) prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  finite-type-iff-list equal_wf l_member_wf all_wf l_all_iff l_all_wf iff_wf decidable_functionality inject_wf decidable__l_all decidable__implies set_wf decidable_wf finite-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis independent_pairFormation cumulativity applyEquality functionExtensionality because_Cache sqequalRule lambdaEquality functionEquality addLevel impliesFunctionality allFunctionality dependent_functionElimination setElimination rename setEquality levelHypothesis allLevelFunctionality impliesLevelFunctionality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type]
    (finite-type(T)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[A:Type].  ((\mforall{}x,y:A.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  A.  Dec(Inj(T;A;f))))))



Date html generated: 2017_04_17-AM-07_47_42
Last ObjectModification: 2017_02_27-PM-04_22_08

Theory : list_1


Home Index