Nuprl Lemma : int_seg_finite
∀n,m:ℤ.  finite({n..m-})
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
finite: finite(T)
Lemmas referenced : 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_properties, 
equipollent-zero, 
int_seg_wf, 
equipollent_wf, 
equipollent_interval, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
subtract_wf, 
istype-int, 
decidable__le
Rules used in proof : 
productElimination, 
rename, 
setElimination, 
Error :universeIsType, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :lambdaEquality_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
isectElimination, 
Error :dependent_set_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
Error :inhabitedIsType, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}n,m:\mBbbZ{}.    finite(\{n..m\msupminus{}\})
Date html generated:
2019_06_20-PM-02_18_54
Last ObjectModification:
2019_06_19-PM-06_19_45
Theory : equipollence!!cardinality!
Home
Index