Nuprl Lemma : int_seg_finite

n,m:ℤ.  finite({n..m-})


Proof




Definitions occuring in Statement :  finite: finite(T) int_seg: {i..j-} all: x:A. B[x] int:
Definitions unfolded in proof :  lelt: i ≤ j < k int_seg: {i..j-} rev_implies:  Q iff: ⇐⇒ Q less_than': less_than'(a;b) le: A ≤ B prop: and: P ∧ Q top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a uall: [x:A]. B[x] nat: exists: x:A. B[x] or: P ∨ Q decidable: Dec(P) member: t ∈ T all: x:A. B[x] finite: finite(T)
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf int_seg_properties equipollent-zero int_seg_wf equipollent_wf equipollent_interval istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf istype-int decidable__le
Rules used in proof :  productElimination rename setElimination Error :universeIsType,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality isectElimination Error :dependent_set_memberEquality_alt,  Error :dependent_pairFormation_alt,  Error :inhabitedIsType,  unionElimination hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}n,m:\mBbbZ{}.    finite(\{n..m\msupminus{}\})



Date html generated: 2019_06_20-PM-02_18_54
Last ObjectModification: 2019_06_19-PM-06_19_45

Theory : equipollence!!cardinality!


Home Index