Nuprl Lemma : equipollent_interval

a,b:ℤ.  {a..b-~ ℕa


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} all: x:A. B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B member: t ∈ T exists: x:A. B[x] int_seg: {i..j-} uall: [x:A]. B[x] lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: biject: Bij(A;B;f) inject: Inj(A;B;f) guard: {T} surject: Surj(A;B;f) uiff: uiff(P;Q)
Lemmas referenced :  add-subtract-cancel add-member-int_seg2 equal_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int biject_wf int_seg_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation intEquality dependent_pairFormation lambdaEquality dependent_set_memberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_pairFormation productElimination dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll because_Cache equalityTransitivity equalitySymmetry applyEquality setEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    \{a..b\msupminus{}\}  \msim{}  \mBbbN{}b  -  a



Date html generated: 2016_05_14-PM-04_01_16
Last ObjectModification: 2016_01_14-PM-11_06_37

Theory : equipollence!!cardinality!


Home Index