Nuprl Lemma : f-union-subset

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y,z:fset(A)].  uiff(x ⋃ y ⊆ z;x ⊆ z ∧ y ⊆ z)


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a f-subset: xs ⊆ ys all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q or: P ∨ Q prop: guard: {T}
Lemmas referenced :  member-fset-union fset-member_wf fset-member_witness f-subset_wf fset-union_wf and_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality independent_isectElimination lemma_by_obid isectElimination because_Cache productElimination independent_functionElimination inlFormation sqequalRule inrFormation independent_pairEquality lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality unionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x,y,z:fset(A)].    uiff(x  \mcup{}  y  \msubseteq{}  z;x  \msubseteq{}  z  \mwedge{}  y  \msubseteq{}  z)



Date html generated: 2016_05_14-PM-03_38_43
Last ObjectModification: 2015_12_26-PM-06_42_04

Theory : finite!sets


Home Index