Nuprl Lemma : f-union-subset
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y,z:fset(A)].  uiff(x ⋃ y ⊆ z;x ⊆ z ∧ y ⊆ z)
Proof
Definitions occuring in Statement : 
fset-union: x ⋃ y
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
f-subset: xs ⊆ ys
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
member-fset-union, 
fset-member_wf, 
fset-member_witness, 
f-subset_wf, 
fset-union_wf, 
and_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
inlFormation, 
sqequalRule, 
inrFormation, 
independent_pairEquality, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
unionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x,y,z:fset(A)].    uiff(x  \mcup{}  y  \msubseteq{}  z;x  \msubseteq{}  z  \mwedge{}  y  \msubseteq{}  z)
Date html generated:
2016_05_14-PM-03_38_43
Last ObjectModification:
2015_12_26-PM-06_42_04
Theory : finite!sets
Home
Index