Nuprl Lemma : fset-intersection-associative

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y,z:fset(A)].  (x ⋂ y ⋂ x ⋂ y ⋂ z ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-intersection: a ⋂ b fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-intersection_wf fset-member_witness fset-member_wf member-fset-intersection uiff_wf iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination because_Cache sqequalRule isect_memberEquality axiomEquality independent_pairFormation independent_pairEquality independent_functionElimination productEquality addLevel cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y,z:fset(A)].    (x  \mcap{}  y  \mcap{}  z  =  x  \mcap{}  y  \mcap{}  z)



Date html generated: 2019_06_20-PM-01_59_03
Last ObjectModification: 2018_08_24-PM-11_37_51

Theory : finite!sets


Home Index