Nuprl Lemma : fset-intersection-commutes
∀[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y:fset(A)].  (x ⋂ y = y ⋂ x ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-intersection: a ⋂ b
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset-extensionality, 
fset-intersection_wf, 
fset-member_witness, 
fset-member_wf, 
uiff_wf, 
iff_weakening_uiff, 
member-fset-intersection
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
independent_pairEquality, 
independent_functionElimination, 
productEquality, 
cumulativity, 
addLevel
Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y:fset(A)].    (x  \mcap{}  y  =  y  \mcap{}  x)
Date html generated:
2019_06_20-PM-01_59_01
Last ObjectModification:
2018_08_24-PM-11_37_52
Theory : finite!sets
Home
Index