Nuprl Lemma : fset_mem_wf
∀[T:Type]. ∀[x:T]. ∀[s:fset(T)].  (x ↓∈ s ∈ ℙ)
Proof
Definitions occuring in Statement : 
fset_mem: x ↓∈ s
, 
fset: fset(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset_mem: x ↓∈ s
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
Lemmas referenced : 
squash_wf, 
exists_wf, 
list_wf, 
and_wf, 
equal_wf, 
fset_wf, 
list_subtype_fset, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[s:fset(T)].    (x  \mdownarrow{}\mmember{}  s  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_38_03
Last ObjectModification:
2015_12_26-PM-06_42_18
Theory : finite!sets
Home
Index