Nuprl Lemma : fset_mem_wf

[T:Type]. ∀[x:T]. ∀[s:fset(T)].  (x ↓∈ s ∈ ℙ)


Proof




Definitions occuring in Statement :  fset_mem: x ↓∈ s fset: fset(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset_mem: x ↓∈ s so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s]
Lemmas referenced :  squash_wf exists_wf list_wf and_wf equal_wf fset_wf list_subtype_fset l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[s:fset(T)].    (x  \mdownarrow{}\mmember{}  s  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_38_03
Last ObjectModification: 2015_12_26-PM-06_42_18

Theory : finite!sets


Home Index