Nuprl Lemma : strong-subtype-fset-member-type

[A,B:Type]. ∀[eq:EqDecider(B)].  ∀[s:fset(A)]. ∀[x:B].  x ∈ supposing x ∈ supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B prop: fset-member: a ∈ s all: x:A. B[x] guard: {T} istype: istype(T) iff: ⇐⇒ Q and: P ∧ Q implies:  Q fset: fset(T) quotient: x,y:A//B[x; y]
Lemmas referenced :  fset-subtype fset-member_wf fset_wf strong-subtype_wf deq_wf istype-universe assert-deq-member subtype_rel_list strong-subtype-l_member-type list_wf set-equal_wf set-equal-reflex member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut hypothesisEquality applyEquality thin introduction extract_by_obid sqequalHypSubstitution isectElimination independent_isectElimination hypothesis productElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality dependent_functionElimination independent_functionElimination promote_hyp Error :lambdaFormation_alt,  pointwiseFunctionality pertypeElimination Error :productIsType,  Error :equalityIstype,  sqequalBase

Latex:
\mforall{}[A,B:Type].  \mforall{}[eq:EqDecider(B)].
    \mforall{}[s:fset(A)].  \mforall{}[x:B].    x  \mmember{}  A  supposing  x  \mmember{}  s  supposing  strong-subtype(A;B)



Date html generated: 2019_06_20-PM-01_58_36
Last ObjectModification: 2018_11_24-PM-06_40_37

Theory : finite!sets


Home Index