Nuprl Lemma : div_minus_one
∀[x:ℤ]. (x ÷ -1 ~ -x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
div_anti_sym, 
nequal_wf, 
subtype_rel_self, 
iff_weakening_equal, 
div_one, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
minusEquality, 
sqequalRule, 
imageMemberEquality, 
because_Cache, 
productElimination, 
axiomSqEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (x  \mdiv{}  -1  \msim{}  -x)
Date html generated:
2020_05_19-PM-09_41_20
Last ObjectModification:
2019_12_26-PM-08_59_00
Theory : int_2
Home
Index