Nuprl Lemma : div_minus_one

[x:ℤ]. (x ÷ -1 -x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] divide: n ÷ m minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf squash_wf true_wf istype-universe div_anti_sym nequal_wf subtype_rel_self iff_weakening_equal div_one istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis applyEquality lambdaEquality_alt imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_set_memberEquality_alt natural_numberEquality lambdaFormation_alt dependent_functionElimination independent_functionElimination voidElimination equalityIstype inhabitedIsType baseClosed sqequalBase minusEquality sqequalRule imageMemberEquality because_Cache productElimination axiomSqEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (x  \mdiv{}  -1  \msim{}  -x)



Date html generated: 2020_05_19-PM-09_41_20
Last ObjectModification: 2019_12_26-PM-08_59_00

Theory : int_2


Home Index