Nuprl Lemma : div_one

[x:ℤ]. (x ÷ x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] divide: n ÷ m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A false: False prop: exists: x:A. B[x] and: P ∧ Q cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) absval: |i| decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B subtype_rel: A ⊆B nat: uiff: uiff(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base istype-int nequal_wf decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf istype-false istype-le istype-less_than absval_wf intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma div_unique3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry hypothesisEquality independent_functionElimination axiomSqEquality dependent_set_memberEquality_alt natural_numberEquality lambdaFormation_alt voidElimination equalityIstype inhabitedIsType baseClosed sqequalBase universeIsType dependent_pairFormation_alt sqequalRule independent_pairFormation minusEquality because_Cache imageMemberEquality unionElimination approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt imageElimination productElimination productIsType applyEquality setElimination rename baseApply closedConclusion functionIsType

Latex:
\mforall{}[x:\mBbbZ{}].  (x  \mdiv{}  1  \msim{}  x)



Date html generated: 2020_05_19-PM-09_41_18
Last ObjectModification: 2019_10_16-PM-04_23_57

Theory : int_2


Home Index