Nuprl Lemma : le_to_lt
∀[i,j:ℤ].  uiff(i ≤ j;i < j + 1)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
le: A ≤ B
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
member-less_than, 
less_than_wf, 
less_than'_wf, 
decidable__le, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
isectElimination, 
unionElimination, 
hypothesis, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  \mleq{}  j;i  <  j  +  1)
Date html generated:
2018_05_21-PM-00_25_44
Last ObjectModification:
2018_05_15-PM-04_42_51
Theory : int_2
Home
Index