Nuprl Lemma : le_to_lt

[i,j:ℤ].  uiff(i ≤ j;i < 1)


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B add: m natural_number: $n int:
Definitions unfolded in proof :  le: A ≤ B prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  member-less_than less_than_wf less_than'_wf decidable__le le_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt
Rules used in proof :  equalitySymmetry equalityTransitivity because_Cache axiomEquality independent_pairEquality productElimination sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination isectElimination unionElimination hypothesis natural_numberEquality addEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  \mleq{}  j;i  <  j  +  1)



Date html generated: 2018_05_21-PM-00_25_44
Last ObjectModification: 2018_05_15-PM-04_42_51

Theory : int_2


Home Index