Nuprl Lemma : lt_to_le

[i,j:ℤ].  uiff(i < j;(i 1) ≤ j)


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B
Lemmas referenced :  member-less_than le_wf decidable__lt less_than_wf less_than'_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin addEquality hypothesisEquality natural_numberEquality hypothesis unionElimination isectElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll productElimination independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[i,j:\mBbbZ{}].    uiff(i  <  j;(i  +  1)  \mleq{}  j)



Date html generated: 2016_05_14-AM-07_20_19
Last ObjectModification: 2016_01_07-PM-03_59_51

Theory : int_2


Home Index