Nuprl Lemma : qsquash_ex

P:ℕ ⟶ ℙ((∀n:ℕDec(P[n]))  ⇃∃n:ℕP[n]  (∃n:ℕP[n]))


Proof




Definitions occuring in Statement :  qsquash: T nat: decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  and: P ∧ Q guard: {T} all: x:A. B[x] uimplies: supposing a prop: squash: T implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] qsquash: T member: t ∈ T exists: x:A. B[x]
Lemmas referenced :  mu-property2 mu-wf2 nat_wf exists_wf squash-from-quotient decidable_wf all_wf qsquash_wf
Rules used in proof :  productElimination dependent_functionElimination independent_isectElimination imageElimination independent_functionElimination functionExtensionality sqequalRule extract_by_obid introduction sqequalHypSubstitution dependent_pairFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename Error :direct_computation,  lambdaFormation Error :reverse_direct_computation,  cut lemma_by_obid Error :direct_computation_hypothesis,  isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality because_Cache functionEquality cumulativity universeEquality Error :reverse_direct_computation_hypothesis

Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  \00D9\mexists{}n:\mBbbN{}.  P[n]  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n]))



Date html generated: 2017_09_29-PM-05_57_35
Last ObjectModification: 2017_08_30-AM-10_26_45

Theory : int_2


Home Index