Nuprl Lemma : qsquash_ex
∀P:ℕ ⟶ ℙ. ((∀n:ℕ. Dec(P[n])) 
⇒ ⇃∃n:ℕ. P[n] 
⇒ (∃n:ℕ. P[n]))
Proof
Definitions occuring in Statement : 
qsquash: ⇃T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
and: P ∧ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
qsquash: ⇃T
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
mu-property2, 
mu-wf2, 
nat_wf, 
exists_wf, 
squash-from-quotient, 
decidable_wf, 
all_wf, 
qsquash_wf
Rules used in proof : 
productElimination, 
dependent_functionElimination, 
independent_isectElimination, 
imageElimination, 
independent_functionElimination, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
introduction, 
sqequalHypSubstitution, 
dependent_pairFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename, 
Error :direct_computation, 
lambdaFormation, 
Error :reverse_direct_computation, 
cut, 
lemma_by_obid, 
Error :direct_computation_hypothesis, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
Error :reverse_direct_computation_hypothesis
Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  \00D9\mexists{}n:\mBbbN{}.  P[n]  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n]))
Date html generated:
2017_09_29-PM-05_57_35
Last ObjectModification:
2017_08_30-AM-10_26_45
Theory : int_2
Home
Index