Nuprl Lemma : mu-wf2

[P:ℕ ⟶ ℙ]. ∀[d:∀n:ℕDec(P[n])].  mu(d) ∈ ℕ supposing ∃n:ℕP[n]


Proof




Definitions occuring in Statement :  mu: mu(f) nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q decidable: Dec(P) or: P ∨ Q top: Top mu: mu(f) exists: x:A. B[x] nat: int_upper: {i...} isl: isl(x) bfalse: ff true: True btrue: tt ifthenelse: if then else fi  assert: b guard: {T}
Lemmas referenced :  mu-ge_wf2 subtype_rel_dep_function nat_wf decidable_wf int_upper_wf top_wf upper_subtype_nat istype-void subtype_rel_union not_wf subtype_rel_self assert_wf btrue_wf bfalse_wf equal_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality Error :isect_memberFormation_alt,  hypothesis hypothesisEquality applyEquality sqequalRule Error :lambdaEquality_alt,  Error :universeIsType,  because_Cache unionEquality independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :unionIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :productIsType,  Error :functionIsType,  universeEquality productElimination Error :dependent_pairFormation_alt,  functionExtensionality Error :inhabitedIsType,  unionElimination Error :equalityIsType1,  dependent_functionElimination independent_functionElimination lambdaFormation lemma_by_obid

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:\mforall{}n:\mBbbN{}.  Dec(P[n])].    mu(d)  \mmember{}  \mBbbN{}  supposing  \mexists{}n:\mBbbN{}.  P[n]



Date html generated: 2019_06_20-PM-01_17_09
Last ObjectModification: 2018_10_06-AM-11_21_47

Theory : int_2


Home Index