Nuprl Lemma : mu-wf2
∀[P:ℕ ⟶ ℙ]. ∀[d:∀n:ℕ. Dec(P[n])].  mu(d) ∈ ℕ supposing ∃n:ℕ. P[n]
Proof
Definitions occuring in Statement : 
mu: mu(f)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
top: Top
, 
mu: mu(f)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
isl: isl(x)
, 
bfalse: ff
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
guard: {T}
Lemmas referenced : 
mu-ge_wf2, 
subtype_rel_dep_function, 
nat_wf, 
decidable_wf, 
int_upper_wf, 
top_wf, 
upper_subtype_nat, 
istype-void, 
subtype_rel_union, 
not_wf, 
subtype_rel_self, 
assert_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
Error :isect_memberFormation_alt, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
because_Cache, 
unionEquality, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :unionIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :productIsType, 
Error :functionIsType, 
universeEquality, 
productElimination, 
Error :dependent_pairFormation_alt, 
functionExtensionality, 
Error :inhabitedIsType, 
unionElimination, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation, 
lemma_by_obid
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:\mforall{}n:\mBbbN{}.  Dec(P[n])].    mu(d)  \mmember{}  \mBbbN{}  supposing  \mexists{}n:\mBbbN{}.  P[n]
Date html generated:
2019_06_20-PM-01_17_09
Last ObjectModification:
2018_10_06-AM-11_21_47
Theory : int_2
Home
Index