Nuprl Lemma : right_mul_preserves_le

[a,b:ℤ]. ∀[n:ℕ].  (a n) ≤ (b n) supposing a ≤ b


Proof




Definitions occuring in Statement :  nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat: prop: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermMultiply_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_wf le_wf less_than'_wf mul_preserves_le
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination multiplyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry intEquality unionElimination natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (a  *  n)  \mleq{}  (b  *  n)  supposing  a  \mleq{}  b



Date html generated: 2016_05_14-AM-07_20_32
Last ObjectModification: 2016_01_07-PM-03_59_48

Theory : int_2


Home Index