Nuprl Lemma : right_mul_preserves_le
∀[a,b:ℤ]. ∀[n:ℕ].  (a * n) ≤ (b * n) supposing a ≤ b
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
prop: ℙ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_wf, 
le_wf, 
less_than'_wf, 
mul_preserves_le
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
multiplyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (a  *  n)  \mleq{}  (b  *  n)  supposing  a  \mleq{}  b
Date html generated:
2016_05_14-AM-07_20_32
Last ObjectModification:
2016_01_07-PM-03_59_48
Theory : int_2
Home
Index