Nuprl Lemma : eval_list_wf
∀[T:Type]. ∀[L:T List].  (eval_list(L) ∈ T List)
Proof
Definitions occuring in Statement : 
eval_list: eval_list(t)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eval_list: eval_list(t)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
cons: [a / b]
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
list_wf, 
nil_wf, 
value-type-has-value, 
list-value-type, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
callbyvalueReduce, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (eval\_list(L)  \mmember{}  T  List)
Date html generated:
2016_05_14-AM-06_27_29
Last ObjectModification:
2015_12_26-PM-00_41_24
Theory : list_0
Home
Index