Nuprl Lemma : eval_list_wf

[T:Type]. ∀[L:T List].  (eval_list(L) ∈ List)


Proof




Definitions occuring in Statement :  eval_list: eval_list(t) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eval_list: eval_list(t) so_lambda: so_lambda(x,y,z.t[x; y; z]) has-value: (a)↓ uimplies: supposing a cons: [a b] so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf nil_wf value-type-has-value list-value-type cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality callbyvalueReduce independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (eval\_list(L)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_27_29
Last ObjectModification: 2015_12_26-PM-00_41_24

Theory : list_0


Home Index