Nuprl Lemma : not-not-l_all-shift
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀x∈L.¬¬P[x]) 
⇒ (¬¬(∀x∈L.P[x])))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
not-not-l_all-xmiddle, 
int_seg_wf, 
length_wf, 
l_all_wf, 
not_wf, 
l_member_wf, 
istype-void, 
list_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
universeIsType, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality_alt, 
unionEquality, 
applyEquality, 
setIsType, 
functionIsType, 
universeEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x\mmember{}L.\mneg{}\mneg{}P[x])  {}\mRightarrow{}  (\mneg{}\mneg{}(\mforall{}x\mmember{}L.P[x])))
Date html generated:
2020_05_19-PM-09_37_17
Last ObjectModification:
2019_11_04-PM-01_47_06
Theory : list_0
Home
Index