Nuprl Lemma : not-not-l_all-shift

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀x∈L.¬¬P[x])  (¬¬(∀x∈L.P[x])))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A l_all: (∀x∈L.P[x]) all: x:A. B[x] or: P ∨ Q false: False so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  not-not-l_all-xmiddle int_seg_wf length_wf l_all_wf not_wf l_member_wf istype-void list_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt independent_functionElimination dependent_functionElimination unionElimination voidElimination universeIsType natural_numberEquality sqequalRule lambdaEquality_alt unionEquality applyEquality setIsType functionIsType universeEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x\mmember{}L.\mneg{}\mneg{}P[x])  {}\mRightarrow{}  (\mneg{}\mneg{}(\mforall{}x\mmember{}L.P[x])))



Date html generated: 2020_05_19-PM-09_37_17
Last ObjectModification: 2019_11_04-PM-01_47_06

Theory : list_0


Home Index