Nuprl Lemma : not-not-l_all-xmiddle
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  (¬¬(∀x∈L.P[x] ∨ (¬P[x])))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
not: ¬A, 
or: P ∨ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
l_all: (∀x∈L.P[x]), 
or: P ∨ Q
Lemmas referenced : 
not-not-all-int_seg-xmiddle, 
length_wf, 
select_wf, 
sq_stable__le, 
select_member, 
l_member_wf, 
int_seg_wf, 
l_all_wf, 
not_wf, 
istype-void, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
voidElimination, 
functionIsType, 
unionEquality, 
setIsType, 
functionIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    (\mneg{}\mneg{}(\mforall{}x\mmember{}L.P[x]  \mvee{}  (\mneg{}P[x])))
Date html generated:
2020_05_19-PM-09_37_13
Last ObjectModification:
2019_10_31-PM-10_12_26
Theory : list_0
Home
Index