Nuprl Lemma : not-not-all-int_seg-xmiddle

a,b:ℤ. ∀P:{a..b-} ⟶ ℙ.  (¬¬(∀i:{a..b-}. (P[i] ∨ P[i]))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} prop: so_apply: x[s] all: x:A. B[x] not: ¬A or: P ∨ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: not: ¬A int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True or: P ∨ Q so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q nat_plus: + sq_type: SQType(T)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than sq_stable__le less-iff-le condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-associates zero-add add_functionality_wrt_le add-commutes le-add-cancel int_seg_wf subtype_rel_self subtract-1-ge-0 istype-nat add-is-int-iff int_subtype_base decidable__lt istype-false not-lt-2 subtract_wf le-add-cancel2 istype-le not-not-1-xmiddle add-mul-special zero-mul add-zero le-add-cancel-alt le_reflexive one-mul two-mul mul-distributes-right not-le-2 omega-shadow decidable__le double-negation-hyp-elim all_wf or_wf not_wf subtype_base_sq set_subtype_base lelt_wf decidable__int_equal not-equal-2 minus-minus subtract_nat_wf istype-int
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination functionIsTypeImplies inhabitedIsType addEquality isect_memberEquality_alt minusEquality imageMemberEquality baseClosed functionIsType unionIsType applyEquality instantiate universeEquality because_Cache dependent_set_memberEquality_alt baseApply closedConclusion unionElimination productIsType multiplyEquality functionEquality unionEquality cumulativity intEquality equalityTransitivity equalitySymmetry equalityIstype

Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}P:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}.    (\mneg{}\mneg{}(\mforall{}i:\{a..b\msupminus{}\}.  (P[i]  \mvee{}  (\mneg{}P[i]))))



Date html generated: 2020_05_19-PM-09_36_10
Last ObjectModification: 2019_10_17-PM-02_49_36

Theory : int_1


Home Index