Nuprl Lemma : append-cancellation
∀[T:Type]. ∀[as,as',bs,cs:T List].
  (cs = bs ∈ (T List)) supposing (((as @ cs) = (as' @ bs) ∈ (T List)) and (||as|| = ||as'|| ∈ ℤ))
Proof
Definitions occuring in Statement : 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
append_wf, 
list_wf, 
length_wf, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
general-append-cancellation
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
inlFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
productElimination, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,as',bs,cs:T  List].
    (cs  =  bs)  supposing  (((as  @  cs)  =  (as'  @  bs))  and  (||as||  =  ||as'||))
Date html generated:
2016_05_14-AM-07_39_16
Last ObjectModification:
2016_01_15-AM-08_36_52
Theory : list_1
Home
Index