Nuprl Lemma : compare-fun_wf
∀[A,B:Type]. ∀[cmp:comparison(B)]. ∀[f:A ⟶ B].  (compare-fun(cmp;f) ∈ comparison(A))
Proof
Definitions occuring in Statement : 
compare-fun: compare-fun(cmp;f)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
compare-fun: compare-fun(cmp;f)
, 
comparison: comparison(T)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
equal-wf-T-base, 
le_wf, 
all_wf, 
comparison_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
productElimination, 
lambdaFormation, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
intEquality, 
dependent_functionElimination, 
minusEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
functionEquality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[cmp:comparison(B)].  \mforall{}[f:A  {}\mrightarrow{}  B].    (compare-fun(cmp;f)  \mmember{}  comparison(A))
Date html generated:
2017_04_17-AM-08_27_02
Last ObjectModification:
2017_02_27-PM-04_49_45
Theory : list_1
Home
Index