Nuprl Lemma : compare-fun_wf
∀[A,B:Type]. ∀[cmp:comparison(B)]. ∀[f:A ⟶ B]. (compare-fun(cmp;f) ∈ comparison(A))
Proof
Definitions occuring in Statement :
compare-fun: compare-fun(cmp;f)
,
comparison: comparison(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
compare-fun: compare-fun(cmp;f)
,
comparison: comparison(T)
,
and: P ∧ Q
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
iff_weakening_equal,
equal-wf-T-base,
le_wf,
all_wf,
comparison_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
setElimination,
thin,
rename,
dependent_set_memberEquality,
lambdaEquality,
applyEquality,
functionExtensionality,
hypothesisEquality,
cumulativity,
productElimination,
lambdaFormation,
imageElimination,
extract_by_obid,
isectElimination,
equalityTransitivity,
hypothesis,
equalitySymmetry,
because_Cache,
intEquality,
dependent_functionElimination,
minusEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
independent_functionElimination,
independent_pairFormation,
productEquality,
functionEquality,
axiomEquality,
isect_memberEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[cmp:comparison(B)]. \mforall{}[f:A {}\mrightarrow{} B]. (compare-fun(cmp;f) \mmember{} comparison(A))
Date html generated:
2017_04_17-AM-08_27_02
Last ObjectModification:
2017_02_27-PM-04_49_45
Theory : list_1
Home
Index