Nuprl Lemma : compare-fun_wf

[A,B:Type]. ∀[cmp:comparison(B)]. ∀[f:A ⟶ B].  (compare-fun(cmp;f) ∈ comparison(A))


Proof




Definitions occuring in Statement :  compare-fun: compare-fun(cmp;f) comparison: comparison(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compare-fun: compare-fun(cmp;f) comparison: comparison(T) and: P ∧ Q cand: c∧ B all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf iff_weakening_equal equal-wf-T-base le_wf all_wf comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality lambdaEquality applyEquality functionExtensionality hypothesisEquality cumulativity productElimination lambdaFormation imageElimination extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry because_Cache intEquality dependent_functionElimination minusEquality natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination independent_pairFormation productEquality functionEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[cmp:comparison(B)].  \mforall{}[f:A  {}\mrightarrow{}  B].    (compare-fun(cmp;f)  \mmember{}  comparison(A))



Date html generated: 2017_04_17-AM-08_27_02
Last ObjectModification: 2017_02_27-PM-04_49_45

Theory : list_1


Home Index