Nuprl Lemma : comparison-connex
∀[T:Type]. ∀cmp:comparison(T). Connex(T;x,y.0 ≤ (cmp x y))
Proof
Definitions occuring in Statement : 
comparison: comparison(T), 
connex: Connex(T;x,y.R[x; y]), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
connex: Connex(T;x,y.R[x; y]), 
comparison: comparison(T), 
member: t ∈ T, 
and: P ∧ Q, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
true: True, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMinus_wf, 
itermConstant_wf, 
intformle_wf, 
intformor_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
decidable__or, 
sq_stable_from_decidable, 
le_wf, 
or_wf, 
comparison_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesis, 
universeEquality, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
productElimination, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Connex(T;x,y.0  \mleq{}  (cmp  x  y))
Date html generated:
2016_05_14-PM-02_38_27
Last ObjectModification:
2016_01_15-AM-07_41_08
Theory : list_1
Home
Index