Nuprl Lemma : cons_iseg_not_null

[T:Type]. ∀u:T. ∀L,v:T List.  (L ≤ [u v]  (¬↑null(L))  (∃K:T List. ((L [u K] ∈ (T List)) ∧ K ≤ v)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 null: null(as) cons: [a b] list: List assert: b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A true: True false: False cons: [a b] top: Top bfalse: ff iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] cand: c∧ B prop:
Lemmas referenced :  list-cases null_nil_lemma product_subtype_list null_cons_lemma cons_iseg and_wf equal_wf cons_wf list_wf iseg_wf not_wf assert_wf null_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality because_Cache dependent_pairFormation dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setElimination rename setEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}u:T.  \mforall{}L,v:T  List.    (L  \mleq{}  [u  /  v]  {}\mRightarrow{}  (\mneg{}\muparrow{}null(L))  {}\mRightarrow{}  (\mexists{}K:T  List.  ((L  =  [u  /  K])  \mwedge{}  K  \mleq{}  v)))



Date html generated: 2016_05_14-PM-01_30_55
Last ObjectModification: 2015_12_26-PM-05_23_50

Theory : list_1


Home Index