Nuprl Lemma : eval-mklist_wf

[T:Type]. ∀[n,offset:ℕ]. ∀[f:{offset..n offset-} ⟶ T].  (eval-mklist(n;f;offset) ∈ List) supposing value-type(T)


Proof




Definitions occuring in Statement :  eval-mklist: eval-mklist(n;f;offset) list: List int_seg: {i..j-} nat: value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  eval-mklist-sq mklist_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than int_seg_wf istype-nat value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis Error :lambdaEquality_alt,  applyEquality Error :dependent_set_memberEquality_alt,  addEquality setElimination rename because_Cache natural_numberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :productIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[n,offset:\mBbbN{}].  \mforall{}[f:\{offset..n  +  offset\msupminus{}\}  {}\mrightarrow{}  T].    (eval-mklist(n;f;offset)  \mmember{}  T  List) 
    supposing  value-type(T)



Date html generated: 2019_06_20-PM-01_31_23
Last ObjectModification: 2019_01_21-AM-11_13_41

Theory : list_1


Home Index