Nuprl Lemma : eval-mklist_wf
∀[T:Type]. ∀[n,offset:ℕ]. ∀[f:{offset..n + offset-} ⟶ T].  (eval-mklist(n;f;offset) ∈ T List) supposing value-type(T)
Proof
Definitions occuring in Statement : 
eval-mklist: eval-mklist(n;f;offset)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
eval-mklist-sq, 
mklist_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
int_seg_wf, 
istype-nat, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :productIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[n,offset:\mBbbN{}].  \mforall{}[f:\{offset..n  +  offset\msupminus{}\}  {}\mrightarrow{}  T].    (eval-mklist(n;f;offset)  \mmember{}  T  List) 
    supposing  value-type(T)
Date html generated:
2019_06_20-PM-01_31_23
Last ObjectModification:
2019_01_21-AM-11_13_41
Theory : list_1
Home
Index