Nuprl Lemma : eval-mklist-sq
∀[T:Type]
  ∀[n,offset:ℕ]. ∀[f:{offset..n + offset-} ⟶ T].  (eval-mklist(n;f;offset) ~ mklist(n;λi.(f (i + offset)))) 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
eval-mklist: eval-mklist(n;f;offset), 
mklist: mklist(n;f), 
int_seg: {i..j-}, 
nat: ℕ, 
value-type: value-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
mklist: mklist(n;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
eval-mklist: eval-mklist(n;f;offset), 
nil: [], 
it: ⋅, 
primrec: primrec(n;b;c), 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
has-value: (a)↓, 
decidable: Dec(P), 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract-1-ge-0, 
istype-nat, 
value-type_wf, 
istype-universe, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
value-type-has-value, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
istype-le, 
int-value-type, 
subtract_wf, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
zero-add, 
subtype_rel_self, 
list_wf, 
list-value-type, 
primrec_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nil_wf, 
append_wf, 
cons_wf, 
add-member-int_seg2, 
decidable__equal_int, 
primrec0_lemma, 
list_ind_nil_lemma, 
le_reflexive, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
addEquality, 
because_Cache, 
productElimination, 
instantiate, 
universeEquality, 
Error :equalityIstype, 
applyEquality, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
promote_hyp, 
cumulativity, 
int_eqReduceFalseSq, 
callbyvalueReduce, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
intEquality, 
minusEquality, 
multiplyEquality, 
closedConclusion
Latex:
\mforall{}[T:Type]
    \mforall{}[n,offset:\mBbbN{}].  \mforall{}[f:\{offset..n  +  offset\msupminus{}\}  {}\mrightarrow{}  T].
        (eval-mklist(n;f;offset)  \msim{}  mklist(n;\mlambda{}i.(f  (i  +  offset)))) 
    supposing  value-type(T)
Date html generated:
2019_06_20-PM-01_31_17
Last ObjectModification:
2019_01_21-AM-11_12_10
Theory : list_1
Home
Index