Nuprl Lemma : implies-filter-equal
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L1,L2:T List].
(filter(P;L1) = L2 ∈ (T List)) supposing
(((∀x:T. ((x ∈ L2)
⇐⇒ (x ∈ L1) ∧ (↑(P x)))) ∧ (∀x,y:T. (x before y ∈ L2
⇒ x before y ∈ L1))) and
no_repeats(T;L1))
Proof
Definitions occuring in Statement :
l_before: x before y ∈ l
,
no_repeats: no_repeats(T;l)
,
l_member: (x ∈ l)
,
filter: filter(P;l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
not: ¬A
,
false: False
,
guard: {T}
Lemmas referenced :
filter-equals,
all_wf,
iff_wf,
l_member_wf,
assert_wf,
l_before_wf,
no_repeats_wf,
list_wf,
bool_wf,
no_repeats_iff,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
hypothesisEquality,
dependent_functionElimination,
independent_isectElimination,
hypothesis,
independent_functionElimination,
independent_pairFormation,
productEquality,
cumulativity,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
functionEquality,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
universeEquality,
lambdaFormation,
voidElimination
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[L1,L2:T List].
(filter(P;L1) = L2) supposing
(((\mforall{}x:T. ((x \mmember{} L2) \mLeftarrow{}{}\mRightarrow{} (x \mmember{} L1) \mwedge{} (\muparrow{}(P x))))
\mwedge{} (\mforall{}x,y:T. (x before y \mmember{} L2 {}\mRightarrow{} x before y \mmember{} L1))) and
no\_repeats(T;L1))
Date html generated:
2017_04_17-AM-08_35_35
Last ObjectModification:
2017_02_27-PM-04_55_03
Theory : list_1
Home
Index