Nuprl Lemma : l-exists-decider_wf

[A:Type]. ∀[F:A ⟶ ℙ].  ∀L:A List. ∀dcd:∀k:A. Dec(F[k]).  (l-exists-decider() dcd ∈ Dec((∃k∈L. F[k])))


Proof




Definitions occuring in Statement :  l-exists-decider: l-exists-decider() l_exists: (∃x∈L. P[x]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable__l_exists subtype_rel: A ⊆B implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x]
Lemmas referenced :  decidable__l_exists isect_wf list_wf decidable_wf l_exists_wf l_member_wf equal_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin instantiate extract_by_obid hypothesis sqequalHypSubstitution sqequalRule applyEquality lambdaEquality isectElimination hypothesisEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality setElimination rename setEquality dependent_functionElimination independent_functionElimination isectEquality because_Cache axiomEquality isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:A  List.  \mforall{}dcd:\mforall{}k:A.  Dec(F[k]).    (l-exists-decider()  L  dcd  \mmember{}  Dec((\mexists{}k\mmember{}L.  F[k])))



Date html generated: 2018_05_21-PM-00_36_07
Last ObjectModification: 2018_05_19-AM-06_43_16

Theory : list_1


Home Index