Nuprl Lemma : length-remove-first-le
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  (||remove-first(P;L)|| ≤ ||L||)
Proof
Definitions occuring in Statement : 
remove-first: remove-first(P;L)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
Lemmas referenced : 
bool_wf, 
l_member_wf, 
remove-first_wf, 
less_than'_wf, 
false_wf, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
itermConstant_wf, 
itermSubtract_wf, 
subtract-is-int-iff, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__le, 
length-remove-first
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
pointwiseFunctionality, 
rename, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
setEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    (||remove-first(P;L)||  \mleq{}  ||L||)
Date html generated:
2016_05_14-PM-02_46_36
Last ObjectModification:
2016_01_15-AM-07_35_11
Theory : list_1
Home
Index