Nuprl Lemma : list-equal-set2

[T:Type]. ∀[P:T ⟶ ℙ].
  ∀[L:{x:T| P[x]}  List]. ∀[L':T List].  L' ∈ ({x:T| P[x]}  List) supposing L' ∈ (T List) 
  supposing ∀x:T. SqStable(P[x])


Proof




Definitions occuring in Statement :  list: List sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x]
Lemmas referenced :  strong-subtype-equal-lists strong-subtype-set3 strong-subtype-self equal_wf list_wf subtype_rel_list all_wf sq_stable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis lambdaEquality sqequalRule universeEquality independent_isectElimination because_Cache setElimination rename isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[L:\{x:T|  P[x]\}    List].  \mforall{}[L':T  List].    L  =  L'  supposing  L  =  L'  supposing  \mforall{}x:T.  SqStable(P[x])



Date html generated: 2016_05_14-AM-07_49_14
Last ObjectModification: 2015_12_26-PM-04_45_02

Theory : list_1


Home Index