Nuprl Lemma : list-equal-set2
∀[T:Type]. ∀[P:T ⟶ ℙ].
  ∀[L:{x:T| P[x]}  List]. ∀[L':T List].  L = L' ∈ ({x:T| P[x]}  List) supposing L = L' ∈ (T List) 
  supposing ∀x:T. SqStable(P[x])
Proof
Definitions occuring in Statement : 
list: T List
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
strong-subtype-equal-lists, 
strong-subtype-set3, 
strong-subtype-self, 
equal_wf, 
list_wf, 
subtype_rel_list, 
all_wf, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[L:\{x:T|  P[x]\}    List].  \mforall{}[L':T  List].    L  =  L'  supposing  L  =  L'  supposing  \mforall{}x:T.  SqStable(P[x])
Date html generated:
2016_05_14-AM-07_49_14
Last ObjectModification:
2015_12_26-PM-04_45_02
Theory : list_1
Home
Index