Nuprl Lemma : mapfilter-contains
∀[T,S:Type].  ∀as,bs:T List. ∀P:T ⟶ 𝔹. ∀f:{x:T| ↑(P x)}  ⟶ S.  (as ⊆ bs 
⇒ mapfilter(f;P;as) ⊆ mapfilter(f;P;bs))
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
mapfilter: mapfilter(f;P;L)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
mapfilter_wf, 
assert_wf, 
member-mapfilter, 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
set_wf, 
equal_wf, 
l_all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
cumulativity, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
productElimination, 
independent_functionElimination, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
productEquality, 
dependent_pairFormation, 
independent_pairFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,S:Type].
    \mforall{}as,bs:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  S.
        (as  \msubseteq{}  bs  {}\mRightarrow{}  mapfilter(f;P;as)  \msubseteq{}  mapfilter(f;P;bs))
Date html generated:
2017_04_17-AM-07_30_14
Last ObjectModification:
2017_02_27-PM-04_07_24
Theory : list_1
Home
Index