Nuprl Lemma : mapfilter-contains

[T,S:Type].  ∀as,bs:T List. ∀P:T ⟶ 𝔹. ∀f:{x:T| ↑(P x)}  ⟶ S.  (as ⊆ bs  mapfilter(f;P;as) ⊆ mapfilter(f;P;bs))


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B mapfilter: mapfilter(f;P;L) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a cand: c∧ B exists: x:A. B[x] guard: {T}
Lemmas referenced :  l_all_iff l_member_wf mapfilter_wf assert_wf member-mapfilter subtype_rel_dep_function bool_wf subtype_rel_self set_wf equal_wf l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality cumulativity setElimination rename hypothesis setEquality productElimination independent_functionElimination functionExtensionality applyEquality independent_isectElimination because_Cache dependent_set_memberEquality productEquality dependent_pairFormation independent_pairFormation functionEquality universeEquality

Latex:
\mforall{}[T,S:Type].
    \mforall{}as,bs:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  S.
        (as  \msubseteq{}  bs  {}\mRightarrow{}  mapfilter(f;P;as)  \msubseteq{}  mapfilter(f;P;bs))



Date html generated: 2017_04_17-AM-07_30_14
Last ObjectModification: 2017_02_27-PM-04_07_24

Theory : list_1


Home Index