Nuprl Lemma : mapfilter-not-nil

[T,B:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:{x:T| (x ∈ L)} | ↑(P x)}  ⟶ B].
  ¬(mapfilter(f;P;L) [] ∈ (B List)) supposing (∃x∈L. ↑(P x))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False all: x:A. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] cand: c∧ B rev_implies:  Q
Lemmas referenced :  l_exists_iff assert_wf l_member_wf member_not_nil mapfilter_wf list-subtype member-mapfilter equal_wf equal-wf-T-base list_wf l_exists_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality functionExtensionality setEquality cumulativity hypothesis setElimination rename dependent_set_memberEquality productElimination independent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation productEquality because_Cache independent_pairFormation voidElimination baseClosed isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T,B:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:\{x:T|  (x  \mmember{}  L)\}  |  \muparrow{}(P  x)\}    {}\mrightarrow{}  B].
    \mneg{}(mapfilter(f;P;L)  =  [])  supposing  (\mexists{}x\mmember{}L.  \muparrow{}(P  x))



Date html generated: 2017_04_17-AM-07_29_59
Last ObjectModification: 2017_02_27-PM-04_07_32

Theory : list_1


Home Index