Nuprl Lemma : reverse_append

[T:Type]. ∀[as,bs:T List].  (rev(as bs) (rev(bs) rev(as)) ∈ (T List))


Proof




Definitions occuring in Statement :  reverse: rev(as) append: as bs list: List uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as) subtype_rel: A ⊆B uimplies: supposing a top: Top append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  rev-append-append subtype_rel_list top_wf list_wf append_assoc append-nil rev-append_wf nil_wf list_ind_nil_lemma append_wf rev-append-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache axiomEquality universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (rev(as  @  bs)  =  (rev(bs)  @  rev(as)))



Date html generated: 2016_05_14-AM-07_35_23
Last ObjectModification: 2015_12_26-PM-02_11_23

Theory : list_1


Home Index